2023 Billion-ton Report, in Preparation

To inform research, development, and deployment strategies.

- Policy agnostic
 Not predictions
- **End-use agnostic Not targets**

2005

Supply...

Can we displace 30% of the country's petroleum consumption?

2011

...Cost...

- County-level supplies by cost.
- Economic model of ag+energy crops.

2016 (BT16)

...Sustainability.

- 44 feedstocks w/ modeled crop vields
- Forest model
- Delivered costs
- 2 Volumes + visualization tools

2023 (BT23)

Add new feedstocks Update waste and algae Refine forest resources

BT16 Summary, RFP implications

BT23 – RFP yield input to ag resource modeling

Resource Crop residues **Switchgrass** Willow Oil seeds

NEW in BT23

Oilseed crops for SAFs

Western Forest Fuels for biomass with USFS

 Biomass from 2022 USFS Wildfire Crisis Strategy

Macro- ("seaweed" algae)

 Collaboration with ARPA-E

MarineCadastre.gov

CO₂ to e-fuels

- Proximity to renewable electricity
- High concentration (e.g. fermentation)

Open slide master to edit

Assumptions matter

Yield assumptions:

Modeling and Analysis

The impact of alternative land and yield assumptions in herbaceous biomass supply modeling: one-size-fits-all resource assessment?

Laurence Eaton, Matthew Langholtz, and Maggie Davis, Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN, USA

Received December 19, 2017; revised October 2, 2018; accepted October 2, 2018 View online at Wiley Online Library (wileyonlinelibrary.com); DOI: 10.1002/bbb.1946; *Biofuels*, *Bioprod. Bioref.* (2018)

Abstract. The Billion-ton Reports series has addressed the technical economic potential of supplying additional biomass from farmland and forests. 1-3 Underlying each of the reports and supporting scenarios is a series of assumptions that drive the modeled output. The assumptions have developed over time with the support of technical experts from industry, academia, and government. 4 Energy crops have not yet reached commodity scale, and only exist in commercial production in a limited number

Market assumptions:

Original Article

Supply analysis of preferential market incentive for energy crops

Oluwafemi Oyedeji[©], Matthew Langholtz[©], Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge TN, USA

Chad Hellwinckel, Department of Agricultural Economics, University of Tennessee, Knoxville, TN, USA

Erin Webb[®], Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Received July 9 2020; Revised December 8 2020; Accepted December 11 2020; View online at Wiley Online Library (wileyonlinelibrary.com); DOI: 10.1002/bbb.2184; *Biofuels*, *Bioprod. Biorgef.* (2021)

Abstract: This analysis explores the valuation of feedstock quality attributes of switchgrass and miscanthus – two energy crops poised for future expansion – and compares the relative economic availability of these two crops under two scenarios: (i) uniform price assumptions (i.e., no incentive for quality), and (ii) a scenario of a price premium based on convertibility (i.e., an incentive for quality). Given data on cellulose content, hemicellulose content, and their relative convertibility, miscanthus is expected to be 11% more efficient at conversion to biofuels than switchgrass under the biochemical conversion route. Based on this scenario of improved conversion efficiency and associated profit, we simulate an 11% price premium for miscanthus over other feedstocks in a base-case scenario. By adding this price premium, supplies of miscanthus increase over the base case by about 4 million (44%), 94 million (44%), 9

Climate change:

